Restek’s PLOT Column Family —
The Benchmark For Performance!

- Innovative bonding process minimizes particle release.
- More consistent flow means stable retention times.
- Outstanding peak symmetry improves impurity analysis.

Visit us at
www.restek.com/petro
PLOT Columns
Available In:

Fused Silica
- Rt* Column Phases:
 - Rt*-Alumina BOND/MapD
 - Rt*-Alumina BOND/Na2SO4
 - Rt*-Alumina BOND/KCl
 - Rt*-Alumina BOND/CFC
 - Rt*-MSieve 5A
 - Rt*-Silica BOND NEW!
 - Rt*-Q-BOND
 - Rt*-QS-BOND
 - Rt*-S-BOND
 - Rt*-U-BOND

Metal
- MXT* Column Phases:
 - MXT*-Alumina BOND/MapD
 - MXT*-Alumina BOND/Na2SO4
 - MXT*-MSieve 5A
 - MXT*-Q-BOND
 - MXT*-S-BOND

Next Generation of Porous Layer Open Tubular (PLOT) Columns
- Stabilized particle layers improve robustness and reproducibility of retention and flow.
- Fully compatible with valve switching and Deans switching systems.
- Highly efficient, reproducible analyses; ideal for permanent gases, solvents, and hydrocarbons.
- Innovative manufacturing procedure reduces particle generation and improves performance of porous polymer and molecular sieve PLOT columns.
- Wound on a 7”-diameter, 11-pin cage unless otherwise noted.

Porous layer open tubular (PLOT) columns are very beneficial for solving application problems, especially for the analysis of volatile compounds. PLOT columns have a unique selectivity, allowing for the separation of gaseous compounds at room temperature. Due to the adsorption mechanism of the supports used in PLOT columns, permanent gases and light hydrocarbons can be resolved at room temperature; columns can then be programmed to higher temperatures to elute higher boiling compounds.

Traditional PLOT Columns Offer Poor Stability
The traditional PLOT column is built with a 5–50 μm layer of particles adhered to the tubing walls. Because this layer of particles generally lacks stability, PLOT columns must be used very carefully, as particle release is common and can cause unpredictable changes in retention time and flow behavior. Traditional PLOT columns also must generally be used in conjunction with particle traps to prevent the contamination of valves, injectors, and GC detectors. Detectors contaminated with particles typically generate electronic noise, which shows up chromatographically as a spike in the baseline. In extreme cases, detector flow can be obstructed by particle buildup. Particles can also affect valves by becoming lodged in the valve and causing leaks or restricting flow. Figure 1 shows an example of blockage caused by particle accumulation inside a Press-Tight® connector.

Restek® PLOT Columns Offer Improved Stability to Minimize Particle Release
Restek has developed technology and procedures to manufacture PLOT columns with concentric stabilized adsorption layers. These next generation PLOT columns show a constant flow behavior (permeability) and have significantly improved mechanical stability, resulting in easier operation, better chromatography, and reduced particle release. Greater particle stability means more reproducible retention times, virtually no spiking, and longer column lifetimes. This innovative Restek® stabilization chemistry is currently applied to all fused silica and metal PLOT columns featured in this brochure.

Consistent Flow Restriction Factor (F) Guarantees Reproducible Flow
Thick layers of particles are difficult to deposit in a homogeneous layer, and in traditionally manufactured PLOT columns, this results in variable coating thicknesses. The positions where the layer is thicker act as restrictions and affect flow (Figure 2). Depending on the number and intensity of these restrictions, traditional PLOT columns often show greater variation in flow restriction than wall coated open tubular (WCOT) columns. In practice, conventional PLOT columns with the same dimensions can differ in flow by a factor of 4 to 6 when operated at the same nominal pressure. For applications where flow is important, such as with Deans switching, the nonreproducible flow behavior of most commercially available PLOT columns is a problem.

Figure 1: Particles released from traditional PLOT columns can cause blockages.

Figure 2: Inconsistent coating thicknesses result in restrictions that cause significant variation in flow.
In order to measure flow restriction reproducibility, Restek introduced a new factor: the flow restriction factor (F). This factor is based on the retention time of an unretained marker compound, as measured on both coated and uncoated tubing using the same backpressure setting (Equation 1). For quality control purposes, methane is used as the marker when evaluating porous polymer columns, and helium is used for testing molecular sieve 5A columns.

Flow restriction factor determination can be used to assess both the degree of column restriction and the reproducibility of the column coating process. Flow restriction can also be calculated (Equation 2). Figure 3 shows typical results for PLOT columns manufactured using a conventional process. Because of the difference in flow restriction, individual columns have very different flow characteristics. In contrast, Figure 4 shows results for columns made using our Rt®-QS-BOND (bonded porous polymer) PLOT column process. Clearly, our manufacturing process results in greater consistency in both column coating thickness and flow restriction, which results in more stable retention times and better performance in Deans and related flow switching techniques. Flow restriction factors are specified on the certificate of analysis (CoA) included with every Restek® PLOT column, and the values are listed on the report.

![Figure 3: Traditional PLOT columns show significant flow variability, indicating inconsistent column coating thicknesses.](image)

Equation 1: Flow restriction factor (F) is used to demonstrate coating consistency.

\[
F = \frac{t_{R1} - t_{R2}}{t_{R1}}
\]

where:
- \(t_{R1} \) = retention time of unretained component (uncoated tubing)
- \(t_{R2} \) = retention time of unretained component (coated column)

Note: F values will always be <1 as the coated column always has more restriction than the uncoated column.

![Figure 4: PLOT columns from Restek offer consistent flow restriction, giving more reproducible results column-to-column.](image)

Equation 2: Percent flow restriction of coated column.

\[
\% \text{ restriction} = (1 - F) \times 100
\]

Restek’s PLOT columns are exceptionally robust, featuring concentric stabilized coating layers. They allow for more consistent gas flows and are recommended for applications sensitive to variation in retention time or flow. These PLOT columns are a significant advance in technology and are ideal for efficient, reproducible analyses of permanent gases, solvents, and hydrocarbons.

PLOT Column Phase Cross-Reference: Similar Selectivity

<table>
<thead>
<tr>
<th>Column Type</th>
<th>Porous Layer</th>
<th>Supelco</th>
<th>Alltech</th>
<th>Agilent (J&W, Varian, Chrompack)</th>
<th>Quadrex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina BOND/Na:SO₃</td>
<td>Aluminum oxide</td>
<td>Alumina-Sulfate</td>
<td>AT-Alumina</td>
<td>GS-Alumina, CP-Al/O/Na:SO₃</td>
<td>———</td>
</tr>
<tr>
<td>Alumina BOND/KCl</td>
<td>Aluminum oxide</td>
<td>Alumina-Chloride</td>
<td>———</td>
<td>GS-Alumina KCl, HP PLOT AlO. CP-Al/O/KCl</td>
<td>———</td>
</tr>
<tr>
<td>Alumina BOND/CFC</td>
<td>Aluminum oxide</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
</tr>
<tr>
<td>Alumina BOND/MAPD</td>
<td>Aluminum oxide</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
</tr>
<tr>
<td>Molsieve 5A</td>
<td>Molecular sieve 5A</td>
<td>Molsieve 5A</td>
<td>AT-Molesieve</td>
<td>HP PLOT Molsieve, CP-Molesieve 5A</td>
<td>PLT-SA</td>
</tr>
<tr>
<td>Q-BOND</td>
<td>100% Divinylbenzene</td>
<td>Supel-Q-PLOT</td>
<td>AT-Q</td>
<td>HP PLOT Q, CP-PoraPlot Q, PoraBond Q</td>
<td>———</td>
</tr>
<tr>
<td>QS-BOND</td>
<td>Intermediate polarity porous polymer</td>
<td>———</td>
<td>———</td>
<td>GS-Q</td>
<td>———</td>
</tr>
<tr>
<td>S-BOND</td>
<td>DVB vinylpyridine polymer</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
</tr>
<tr>
<td>U-BOND</td>
<td>DVB ethylene glycol- dimethacrylate polymer</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
</tr>
<tr>
<td>Silica BOND</td>
<td>Bonded silica</td>
<td>———</td>
<td>———</td>
<td>———</td>
<td>———</td>
</tr>
</tbody>
</table>

Visit www.restek.com/petro
Rt®-Alumina BOND Columns

Restek® Rt®-Alumina BOND columns are highly selective for C1–C5 hydrocarbons and separate all saturated and unsaturated hydrocarbon isomers above ambient temperatures. The reactivity of the aluminum oxide stationary phase is minimized to improve column response for polar unsaturates, such as dienes, and the column’s sensitivity (or response) ensures linear and quantitative chromatographic analysis for these compounds. Strong bonding prevents particle generation and release, which allows valve switching without harming the injection or detection systems. And because they are stable up to at least 200 °C, Rt®-Alumina BOND columns can be regenerated to restore full efficiency and selectivity by conditioning at their maximum temperature if water is adsorbed. High capacity and loadability give you exceptionally symmetrical peaks, making these columns ideal for volatile hydrocarbon separations at percent levels, as well as impurity analyses at ppm concentrations. Restek® Rt®-Alumina BOND PLOT columns are manufactured on fused silica tubing; select phases are also available on metal MXT® tubing.

Guaranteed Reproducibility

To ensure reproducible retention times and predictable flow behavior column-to-column, each Rt®-Alumina BOND column is extensively tested. A hydrocarbon test mix confirms proper phase retention and selectivity. To calculate k (retention or capacity factor), which is a measure of phase retention, 1,3-butadiene is used, while selectivity is measured using retention indices for propadiene and methyl acetylene. The resolution of trans-2-butene and 1-butene is also verified, and to measure efficiency, plates per meter are checked using 1,3-buta diene.

Rt®-Alumina BOND/Na2SO4 Columns (fused silica PLOT) (Na2SO4 deactivation)

- Acetylene and propadiene elute after butanes.
- Best separation for butene isomers (impurities in butene streams).
- Methyl acetylene elutes after 1,3-buta diene.
- Cyclopropane (impurity in propylene) elutes well before propylene.
- Also available on metal MXT® tubing! (See page 12.)

<table>
<thead>
<tr>
<th>ID</th>
<th>ID</th>
<th>temp. limits</th>
<th>30-Meter cat.#</th>
<th>50-Meter cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm</td>
<td>4 µm</td>
<td>to 200 °C</td>
<td>19775</td>
<td>—</td>
</tr>
<tr>
<td>0.32 mm</td>
<td>5 µm</td>
<td>to 200 °C</td>
<td>19757</td>
<td>19758</td>
</tr>
<tr>
<td>0.53 mm</td>
<td>10 µm</td>
<td>to 200 °C</td>
<td>19755</td>
<td>19756</td>
</tr>
</tbody>
</table>

similar phases

GS-Alumina,CP-AL-O/Na2SO4, Alumina-Sulfate, AT-Alumina

did you know?

Restek draws our own fused silica tubing and applies our own proprietary stationary phases. By fully managing our production streams, we are able to ensure unparalleled reliability and stability.
Rt®-Alumina BOND/KCl Columns (fused silica PLOT)
(KCl deactivation)

• Restek’s lowest polarity alumina column.
• Low moisture sensitivity reduces the need for frequent regeneration.
• Acetylene elutes before n-butane.
• Methyl acetylene (impurity in 1,3-butadiene) elutes before 1,3-butadiene.

<table>
<thead>
<tr>
<th>ID</th>
<th>df</th>
<th>temp. limits</th>
<th>30-Meter cat. #</th>
<th>50-Meter cat. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm</td>
<td>4 µm</td>
<td>to 200 °C</td>
<td>19776</td>
<td>—</td>
</tr>
<tr>
<td>0.32 mm</td>
<td>5 µm</td>
<td>to 200 °C</td>
<td>19761</td>
<td>19762</td>
</tr>
<tr>
<td>0.53 mm</td>
<td>10 µm</td>
<td>to 200 °C</td>
<td>19759</td>
<td>19760</td>
</tr>
</tbody>
</table>

Refinery Gas on Rt®-Alumina BOND/KCl

peaks
1. Methane
2. Ethane
3. Ethylene
4. Propane
5. Propylene
6. Isobutane
7. n-Butane
8. Propadiene
9. Acetylene
10. trans-2-Butene
11. 1-Butene
12. Isobutylene
13. cis-2-Butene
14. Isopentane
15. n-Pentane
16. 1,3-Butadiene
17. trans-2-Pentene
18. 2-Methyl-2-butene
19. 1-Pentene
20. cis-2-Pentene
21. Hexanes

Columns
Rt®-Alumina BOND/KCl, 50 m, 0.53 mm ID, 10 µm (cat.# 19760)

Sample
Refinery gas standard

Injection
Inj. Vol.: 10 µL split
Liner: Taper (2 mm) (cat.# 20795)
Inj. Temp.: 200 °C
Split Vent Flow Rate: 80 mL/min

Oven
Oven Temp: 65 °C (hold 1 min) to 200 °C at 10 °C/min (hold 3.5 min)

Carrier Gas
H₂, constant pressure (8.0 psi, 55.2 kPa)

Linear Velocity
74 cm/sec @ 45 °C

Detector
FID @ 200 °C

Make-up Gas
Type: N₂
Data Rate: 20 Hz
Instrument: HP5890 GC

Visit www.restek.com/petro

similar phases
GC-Alumina KCl, HP-PLOT
Al₂O₃/KCl, CP-Al₂O₃/KCl, Alumina-Chloride

did you know?
All Restek® PLOT columns come standard on a 7"-diameter, 11-pin cage. Metal MXT® columns are also available coiled to 3.5" diameter by adding the suffix -273 to the part number (See page 12). If you need more information, please call your local Restek® representative.

For more chromatograms, search our extensive library at
www.restek.com/chromatograms
Impurity Analysis of 1,1,1,2-Tetrafluoroethane (CFC-134a) on Rt®-Alumina BOND/CFC

The Alumina BOND/CFC adsorbent is ideal for retaining halogenated compounds, especially CFCs (chlorinated fluorocarbons) like Freon® products. It offers high selectivity, allowing a wide range of CFC isomers to be resolved at above ambient temperatures. The Rt®-Alumina BOND/CFC column is thoroughly deactivated to reduce the reactivity of alumina. Even though there is still some residual reactivity for some mono- or di-substituted CFCs, the majority of these compounds can be accurately quantified from main stream processes or in impurity analyses.

<table>
<thead>
<tr>
<th>ID</th>
<th>df</th>
<th>temp. limits</th>
<th>30-Meter cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.53 mm</td>
<td>10 µm</td>
<td>to 200 °C</td>
<td>19763</td>
</tr>
</tbody>
</table>

Impurity Analysis of 1,1,1,2-Tetrafluoroethane (CFC-134a) on Rt®-Alumina BOND/CFC

Rt®-Alumina BOND/CFC columns provide the best selectivity for impurity analysis of CFCs.

For more chromatograms, search our extensive library at www.restek.com/chromatograms
Rt®-Alumina BOND/MAPD Columns (fused silica PLOT)

- Optimized deactivation produces maximum response when analyzing trace levels of acetylene, methyl acetylene, and propadiene.
- Stable response factors make this column ideal for process-type applications where recalibration must be minimized.
- High loadability reduces peak tailing and improves separations.
- Extended temperature range up to 250 °C for fast elution of high molecular weight (HMW) hydrocarbons and accelerated column regeneration following exposure to water.
- Also available on metal MXT® tubing! (See page 12.)

Restek’s R&D chemists have optimized the deactivation technology applied to our Rt®-Alumina BOND/MAPD column for improved analysis of trace concentrations of polar hydrocarbons like acetylene, methyl acetylene, and propadiene in hydrocarbon streams containing higher levels of C1–C5 hydrocarbons. Our Alumina PLOT deactivation produces an incredibly inert column that offers superior reproducibility and stable response factors to maximize the number of analyses before recalibration is required. Its high sample capacity reduces peak tailing, thereby improving the separation of target compounds. In addition, a 250 °C maximum operating temperature lets you more quickly elute hydrocarbons up to dodecane and reduces regeneration time when the column is exposed to water from samples or carrier gases.

1,3-Butadiene on Rt®-Alumina BOND/MAPD (Purity Analysis)

<table>
<thead>
<tr>
<th>ID</th>
<th>df</th>
<th>temp. limits</th>
<th>30-Meter cat.#</th>
<th>50-Meter cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm</td>
<td>4 µm</td>
<td>to 250 °C</td>
<td>19781</td>
<td>—</td>
</tr>
<tr>
<td>0.32 mm</td>
<td>5 µm</td>
<td>to 250 °C</td>
<td>19779</td>
<td>19780</td>
</tr>
<tr>
<td>0.53 mm</td>
<td>10 µm</td>
<td>to 250 °C</td>
<td>19777</td>
<td>19778</td>
</tr>
</tbody>
</table>

Rt®-Alumina BOND/MAPD PLOT columns are made specifically for the analysis of petrochemicals and downstream products such as ethylene, propylene, butylenes, and butadiene.

Also available in metal MXT®-Alumina columns!

did you know?

All Restek® PLOT columns come standard on a 7"-diameter, 11-pin cage. Metal MXT® columns are also available coiled to 3.5" diameter by adding the suffix -273 to the part number. If you need more information, please call your local Restek® representative.

also available!

Metal MXT® PLOT Columns

See page 12 for more information.

visit www.restek.com/petro
Molecular Sieve 5A PLOT Columns

Restek's molecular sieve 5A PLOT columns are designed for efficient separation of Ar/O₂ and other permanent gases, including CO. Special coating and deactivation procedures ensure chromatographic efficiency and the integrity of the porous layer coating. Molecular sieves have very high retention, allowing separations of permanent gases at temperatures above ambient. Our deactivation technology also allows CO to elute as a sharp peak. Additionally, our unique immobilization process guarantees that the uniform particles remain adhered to the tubing—even after continuous valve-cycling.

Our revolutionary molecular sieve 5A PLOT columns separate Ar/O₂ and H₂/He at ambient temperature or above (see chromatogram). These columns also are an excellent choice for rapid separation of permanent gases in refinery or natural gas. Available on fused silica and metal MXT® tubing. (See page 12.)

Rt®-Msieve 5A Columns (fused silica PLOT)

<table>
<thead>
<tr>
<th>ID</th>
<th>df</th>
<th>temp. limits</th>
<th>15-Meter cat.#</th>
<th>30-Meter cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm</td>
<td>20 µm</td>
<td>to 300 °C</td>
<td>19773</td>
<td>—</td>
</tr>
<tr>
<td>0.32 mm</td>
<td>30 µm</td>
<td>to 300 °C</td>
<td>19720</td>
<td>19722</td>
</tr>
<tr>
<td>0.53 mm</td>
<td>50 µm</td>
<td>to 300 °C</td>
<td>19721</td>
<td>19723</td>
</tr>
</tbody>
</table>

Separation of Argon/Oxygen and Other Permanent Gases on Rt®-Msieve 5A

<table>
<thead>
<tr>
<th>Peaks</th>
<th>Conc. (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hydrogen</td>
<td>40</td>
</tr>
<tr>
<td>2. Argon</td>
<td>30</td>
</tr>
<tr>
<td>3. Oxygen</td>
<td>50</td>
</tr>
<tr>
<td>4. Nitrogen</td>
<td>50</td>
</tr>
<tr>
<td>5. Methane</td>
<td>40</td>
</tr>
<tr>
<td>6. Carbon monoxide</td>
<td>50</td>
</tr>
</tbody>
</table>

Argon resolved from oxygen.

Excellent peak shape for carbon monoxide.
Porous Polymer Columns

Porous polymers are unique, highly retentive stationary phases with a wide application range that are able to elute both polar and nonpolar compounds. They are very hydrophobic, so water has no impact on retention times and even elutes as a good chromatographic peak. The Q-BOND is our most nonpolar and widely used porous polymer column; functional groups can be added to increase polarity (i.e., QS-, S-, and U-BOND). The process used to manufacture porous polymer PLOT columns causes the particles to adhere strongly to the walls of the tubing, so there is virtually no particle generation. You get reproducible performance from column to column, including selectivity and flow.

Rt®-Q-BOND Columns (fused silica PLOT)

100% divinylbenzene

- Nonpolar PLOT column incorporating 100% divinylbenzene.
- Excellent for analysis of C1 to C3 isomers and alkanes up to C12.
- High retention for CO₂ simplifies gas analysis; CO₂ and methane separated from O₂/N₂/CO (Note: O₂/N₂ not separated at room temperature).
- Use for analysis of oxygenated compounds and solvents.
- Maximum temperature of 300 °C.
- Also available on metal MXT™ tubing! (See page 12.)

<table>
<thead>
<tr>
<th>ID</th>
<th>df</th>
<th>temp. limits</th>
<th>15-Meter cat.#</th>
<th>30-Meter cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm</td>
<td>8 µm</td>
<td>to 280/300 °C</td>
<td>19764</td>
<td>19765</td>
</tr>
<tr>
<td>0.32 mm</td>
<td>10 µm</td>
<td>to 280/300 °C</td>
<td>19743</td>
<td>19744</td>
</tr>
<tr>
<td>0.53 mm</td>
<td>20 µm</td>
<td>to 280/300 °C</td>
<td>19741</td>
<td>19742</td>
</tr>
</tbody>
</table>

Permanent Gases Rt®-Q-BOND (PLOT)

Peaks
1. Helium
2. Air
3. Carbon monoxide
4. Methane
5. Carbon dioxide

Restek® porous polymer PLOT columns cover a wide range of polarities

Our porous polymer PLOT columns are not moisture sensitive, making them ideal for applications where moisture is of major concern.

similar phases
HP PLOT Q, CP-PoraPLOT Q, CP-PoraBond Q, Supel-Q-PLOT, AT-Q

visit www.restek.com/petro
Rt®-QS-BOND Columns (fused silica PLOT)
porous divinylbenzene homopolymer

- Intermediate polarity PLOT column incorporating low 4-vinylpyridine.
- Separates ethane, ethylene, and acetylene to baseline.
- Designed for the best possible separation between all C2 isomers.

<table>
<thead>
<tr>
<th>ID</th>
<th>df</th>
<th>temp. limits</th>
<th>15-Meter cat.#</th>
<th>30-Meter cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm</td>
<td>8 µm</td>
<td>to 250 °C</td>
<td>19767</td>
<td>19768</td>
</tr>
<tr>
<td>0.32 mm</td>
<td>10 µm</td>
<td>to 250 °C</td>
<td>19759</td>
<td>19740</td>
</tr>
<tr>
<td>0.53 mm</td>
<td>20 µm</td>
<td>to 250 °C</td>
<td>19737</td>
<td>19738</td>
</tr>
</tbody>
</table>

Refinery Gas Mixture on Rt®-QS-BOND

Rt®-S-BOND Columns (fused silica PLOT)
porous divinylbenzene homopolymer

- Midpolarity PLOT column incorporating high 4-vinylpyridine.
- Use for the analysis of nonpolar and polar compounds.
- Also available on metal MXT® tubing! (See page 12.)

<table>
<thead>
<tr>
<th>ID</th>
<th>df</th>
<th>temp. limits</th>
<th>15-Meter cat.#</th>
<th>30-Meter cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm</td>
<td>8 µm</td>
<td>to 250 °C</td>
<td>19769</td>
<td>19770</td>
</tr>
<tr>
<td>0.32 mm</td>
<td>10 µm</td>
<td>to 250 °C</td>
<td>19747</td>
<td>19748</td>
</tr>
<tr>
<td>0.53 mm</td>
<td>20 µm</td>
<td>to 250 °C</td>
<td>19745</td>
<td>19746</td>
</tr>
</tbody>
</table>

Solvent Mixture on Rt®-S-BOND
Rt®-U-BOND Columns (fused silica PLOT)
divinylbenzene ethylene glycol/dimethylacrylate

- Restek’s highest polarity porous polymer column.
- Polar PLOT column, incorporating divinylbenzene ethylene glycol/dimethylacrylate.
- Highly inert for the analysis of polar and nonpolar compounds.

- **15-Meter**
 - ID: 0.25 mm
 - df: 8 µm
 - temp. limits: to 190 °C
 - cat.#: 19771
 - cat.#: 19772

- **30-Meter**
 - ID: 0.25 mm
 - df: 12 µm
 - temp. limits: to 190 °C
 - cat.#: 19782
 - cat.#: 19783

- **60-Meter**
 - ID: 0.32 mm
 - df: 10 µm
 - temp. limits: to 190 °C
 - cat.#: 19784
 - cat.#: 19785

Formaldehyde on Rt®-U-BOND

Excellent peak shape for highly polar analytes!

- **Column**
 - RT®-U-BOND, 30 m, 0.53 mm ID, 20 µm (cat.# 19750)

- **Sample**
 - Formaldehyde (manual headspace)

- **Injection**
 - Inj. Vol.: 10 µL split (split ratio 10:1)

- **Liner**
 - 2 mm split Precision® liner w/wool (cat.# 20823)

- **Inj. Temp.**
 - 200 °C

- **Split Vent**
 - Flow Rate: 40 mL/min

- **Oven**
 - Oven Temp: 100 °C (hold 1 min) to 150 °C at 25 °C/min (hold 3 min)

- **Carrier Gas**
 - He, constant pressure (7.7 psi, 53.1 kPa)

- **Linear Velocity**
 - 39 cm/sec @ 100 °C

- **Detector**
 - TCD @ 200 °C

- **Make-up Gas**
 - Type: He

- **Data Rate**
 - 20 Hz

- **Sensitivity Mode**
 - He/H₂

- **Instrument**
 - HP5890 GC

Rt®-Silica BOND Columns (fused silica PLOT)

- Versatile column ideal for analysis of light hydrocarbons, sulfur gases, halocarbons, and carbon dioxide.
- Individually QC tested with sensitive C4 probes to ensure consistent selectivity.
- Proprietary manufacturing process practically eliminates particle release, reducing downtime due to obstructed FID jets.
- Bonded silica stationary phase minimizes impact of water, resulting in reproducible retention times for water-containing samples.

- **15-Meter**
 - ID: 0.32 mm
 - temp. limits: -80 to 260 °C
 - cat.#: 19784
 - cat.#: 19785

- **30-Meter**
 - ID: 0.53 mm
 - temp. limits: -80 to 260 °C
 - cat.#: 19786
 - cat.#: 19787

Saturated and Unsaturated Hydrocarbons on Rt®-Silica BOND PLOT Column

- **Peaks**
 1. Methane
 2. Ethane
 3. Ethylene
 4. Acetylene
 5. Propane
 6. Cyclopentane
 7. Propylene
 8. Propadiene
 9. n-Butane
 10. 1-Butene
 11. Methyl acetylene
 12. trans-2-Butene
 13. Isobutylene
 14. cis-2-Butene
 15. Isopentane
 16. n-Pentane

- **Column**
 - Rt®-Silica BOND, 30 m, 0.32 mm ID (cat.# 19785)

- **Diluent**
 - Custom DCG gas standard

- **Conc.**
 - 1 mole percent

- **Injection**
 - Inj. Vol.: 15 µL split (split ratio 35:1)

- **Carrier Gas**
 - He, constant flow

- **Flow Rate**
 - 3.3 mL/min

- **Detector**
 - FID @ 260 °C

- **Make-up Gas**
 - Flow Rate:

- **Flow Rate**
 - 50 mL/min

- **Data Rate**
 - 10 Hz

- **Instrument**
 - Agilent 7890A GC

Similar Phases

HP-PLOT U, CP-PoraPLOT U, CP-PoraBond U

Also Available!

Metal MXT® PLOT Columns
See page 12 for more information.

visit www.restek.com/petro
Metal MXT® PLOT Columns

Restek chemists have developed technology that allows many of our popular PLOT columns to be made on Siltek®-treated stainless steel. These columns have the same characteristics and performance as fused silica PLOT columns (pages 4–11), but offer several additional benefits for process GCs and field instruments.

Advantages of metal MXT® PLOT columns include:
- Can be made in small coil diameters—perfect for tight spaces.
- Rugged material withstands rough handling and shock.
- Designed for robust performance in process GCs and field instruments.
- Available in 3.5"-coil diameter or 7"-diameter, 11-pin cage.

Restek chemists have developed technology that allows many of our popular PLOT columns to be made on Siltek®-treated stainless steel. These columns have the same characteristics and performance as fused silica PLOT columns (pages 4–11), but offer several additional benefits for process GCs and field applications.

<table>
<thead>
<tr>
<th>ID</th>
<th>df</th>
<th>temp. limits</th>
<th>3.5" coil 15-Meter cat.#</th>
<th>7" diameter 11-pin cage 15-Meter cat.#</th>
<th>3.5" coil 30-Meter cat.#</th>
<th>7" diameter 11-pin cage 30-Meter cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>MXT-Msieve 5A</td>
<td>0.25 mm</td>
<td>20 µm to 300 °C</td>
<td>79717-273</td>
<td>79717</td>
<td>—</td>
<td>79723</td>
</tr>
<tr>
<td></td>
<td>0.53 mm</td>
<td>50 µm to 300 °C</td>
<td>—</td>
<td>—</td>
<td>79723-273</td>
<td>79723</td>
</tr>
<tr>
<td>MXT-Alumina BOND/Na2SO4</td>
<td>0.53 mm</td>
<td>10 µm to 200 °C</td>
<td>—</td>
<td>—</td>
<td>79714-273</td>
<td>79714</td>
</tr>
<tr>
<td>MXT-Alumina BOND/MAPD</td>
<td>0.53 mm</td>
<td>10 µm to 250 °C</td>
<td>—</td>
<td>—</td>
<td>79728-273</td>
<td>79728</td>
</tr>
<tr>
<td>MXT-Q-BOND</td>
<td>0.25 mm</td>
<td>8 µm to 300 °C</td>
<td>79718-273</td>
<td>79718</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>0.53 mm</td>
<td>20 µm to 280/300 °C</td>
<td>—</td>
<td>—</td>
<td>79716-273</td>
<td>79716</td>
</tr>
<tr>
<td>MXT-S-BOND</td>
<td>0.53 mm</td>
<td>20 µm to 250 °C</td>
<td>—</td>
<td>—</td>
<td>79712-273</td>
<td>79712</td>
</tr>
</tbody>
</table>

MXT® Low Dead Volume Connector Kits for Metal Columns
- Connect a guard column/transfer line to an MXT® stainless steel column.
- Low thermal mass tracks rapid oven temperature programming.
- Stainless steel ferrules and nuts.
- Available in “Y” and union configurations.
- Siltek® treatment ensures ultimate inertness.

Each kit contains the MXT® union, two 1/16-inch ferrules and nuts.

<table>
<thead>
<tr>
<th>Description</th>
<th>qty</th>
<th>cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>For 0.28 mm ID MXT Columns</td>
<td>kit</td>
<td>20397</td>
</tr>
<tr>
<td>For 0.32 mm ID MXT Columns</td>
<td>kit</td>
<td>20536</td>
</tr>
<tr>
<td>For 0.53 mm ID MXT Columns</td>
<td>kit</td>
<td>20394</td>
</tr>
</tbody>
</table>